(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a(x1) → x1
a(x1) → b(x1)
a(b(x1)) → b(c(x1))
c(c(x1)) → a(c(a(x1)))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → z0
a(z0) → b(z0)
a(b(z0)) → b(c(z0))
c(c(z0)) → a(c(a(z0)))
Tuples:
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(A(c(a(z0))), C(a(z0)), A(z0))
S tuples:
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(A(c(a(z0))), C(a(z0)), A(z0))
K tuples:none
Defined Rule Symbols:
a, c
Defined Pair Symbols:
A, C
Compound Symbols:
c3, c4
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
C(
c(
z0)) →
c4(
A(
c(
a(
z0))),
C(
a(
z0)),
A(
z0)) by
C(c(z0)) → c4(A(c(z0)), C(a(z0)), A(z0))
C(c(z0)) → c4(A(c(b(z0))), C(a(z0)), A(z0))
C(c(b(z0))) → c4(A(c(b(c(z0)))), C(a(b(z0))), A(b(z0)))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → z0
a(z0) → b(z0)
a(b(z0)) → b(c(z0))
c(c(z0)) → a(c(a(z0)))
Tuples:
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(A(c(z0)), C(a(z0)), A(z0))
C(c(z0)) → c4(A(c(b(z0))), C(a(z0)), A(z0))
C(c(b(z0))) → c4(A(c(b(c(z0)))), C(a(b(z0))), A(b(z0)))
S tuples:
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(A(c(z0)), C(a(z0)), A(z0))
C(c(z0)) → c4(A(c(b(z0))), C(a(z0)), A(z0))
C(c(b(z0))) → c4(A(c(b(c(z0)))), C(a(b(z0))), A(b(z0)))
K tuples:none
Defined Rule Symbols:
a, c
Defined Pair Symbols:
A, C
Compound Symbols:
c3, c4
(5) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → z0
a(z0) → b(z0)
a(b(z0)) → b(c(z0))
c(c(z0)) → a(c(a(z0)))
Tuples:
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(C(a(z0)), A(z0))
C(c(b(z0))) → c4(C(a(b(z0))), A(b(z0)))
S tuples:
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(C(a(z0)), A(z0))
C(c(b(z0))) → c4(C(a(b(z0))), A(b(z0)))
K tuples:none
Defined Rule Symbols:
a, c
Defined Pair Symbols:
A, C
Compound Symbols:
c3, c4
(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
C(
c(
z0)) →
c4(
C(
a(
z0)),
A(
z0)) by
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(C(b(z0)), A(z0))
C(c(b(z0))) → c4(C(b(c(z0))), A(b(z0)))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → z0
a(z0) → b(z0)
a(b(z0)) → b(c(z0))
c(c(z0)) → a(c(a(z0)))
Tuples:
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(C(a(z0)), A(z0))
C(c(b(z0))) → c4(C(a(b(z0))), A(b(z0)))
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(C(b(z0)), A(z0))
C(c(b(z0))) → c4(C(b(c(z0))), A(b(z0)))
S tuples:
A(b(z0)) → c3(C(z0))
C(c(b(z0))) → c4(C(a(b(z0))), A(b(z0)))
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(C(b(z0)), A(z0))
C(c(b(z0))) → c4(C(b(c(z0))), A(b(z0)))
K tuples:none
Defined Rule Symbols:
a, c
Defined Pair Symbols:
A, C
Compound Symbols:
c3, c4
(9) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → z0
a(z0) → b(z0)
a(b(z0)) → b(c(z0))
c(c(z0)) → a(c(a(z0)))
Tuples:
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(C(a(z0)), A(z0))
C(c(b(z0))) → c4(C(a(b(z0))), A(b(z0)))
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(A(z0))
C(c(b(z0))) → c4(A(b(z0)))
S tuples:
A(b(z0)) → c3(C(z0))
C(c(b(z0))) → c4(C(a(b(z0))), A(b(z0)))
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(A(z0))
C(c(b(z0))) → c4(A(b(z0)))
K tuples:none
Defined Rule Symbols:
a, c
Defined Pair Symbols:
A, C
Compound Symbols:
c3, c4, c4
(11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
C(
c(
z0)) →
c4(
C(
a(
z0)),
A(
z0)) by
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(C(b(z0)), A(z0))
C(c(b(z0))) → c4(C(b(c(z0))), A(b(z0)))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → z0
a(z0) → b(z0)
a(b(z0)) → b(c(z0))
c(c(z0)) → a(c(a(z0)))
Tuples:
A(b(z0)) → c3(C(z0))
C(c(b(z0))) → c4(C(a(b(z0))), A(b(z0)))
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(A(z0))
C(c(b(z0))) → c4(A(b(z0)))
C(c(z0)) → c4(C(b(z0)), A(z0))
C(c(b(z0))) → c4(C(b(c(z0))), A(b(z0)))
S tuples:
A(b(z0)) → c3(C(z0))
C(c(b(z0))) → c4(C(a(b(z0))), A(b(z0)))
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(A(z0))
C(c(b(z0))) → c4(A(b(z0)))
K tuples:none
Defined Rule Symbols:
a, c
Defined Pair Symbols:
A, C
Compound Symbols:
c3, c4, c4
(13) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → z0
a(z0) → b(z0)
a(b(z0)) → b(c(z0))
c(c(z0)) → a(c(a(z0)))
Tuples:
A(b(z0)) → c3(C(z0))
C(c(b(z0))) → c4(C(a(b(z0))), A(b(z0)))
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(A(z0))
C(c(b(z0))) → c4(A(b(z0)))
S tuples:
A(b(z0)) → c3(C(z0))
C(c(b(z0))) → c4(C(a(b(z0))), A(b(z0)))
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(A(z0))
C(c(b(z0))) → c4(A(b(z0)))
K tuples:none
Defined Rule Symbols:
a, c
Defined Pair Symbols:
A, C
Compound Symbols:
c3, c4, c4
(15) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
C(
c(
b(
z0))) →
c4(
C(
a(
b(
z0))),
A(
b(
z0))) by
C(c(b(x0))) → c4(C(b(x0)), A(b(x0)))
C(c(b(x0))) → c4(C(b(b(x0))), A(b(x0)))
C(c(b(z0))) → c4(C(b(c(z0))), A(b(z0)))
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → z0
a(z0) → b(z0)
a(b(z0)) → b(c(z0))
c(c(z0)) → a(c(a(z0)))
Tuples:
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(A(z0))
C(c(b(z0))) → c4(A(b(z0)))
C(c(b(x0))) → c4(C(b(x0)), A(b(x0)))
C(c(b(x0))) → c4(C(b(b(x0))), A(b(x0)))
C(c(b(z0))) → c4(C(b(c(z0))), A(b(z0)))
S tuples:
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(A(z0))
C(c(b(z0))) → c4(A(b(z0)))
C(c(b(x0))) → c4(C(b(x0)), A(b(x0)))
C(c(b(x0))) → c4(C(b(b(x0))), A(b(x0)))
C(c(b(z0))) → c4(C(b(c(z0))), A(b(z0)))
K tuples:none
Defined Rule Symbols:
a, c
Defined Pair Symbols:
A, C
Compound Symbols:
c3, c4, c4
(17) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing tuple parts
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → z0
a(z0) → b(z0)
a(b(z0)) → b(c(z0))
c(c(z0)) → a(c(a(z0)))
Tuples:
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(A(z0))
C(c(b(z0))) → c4(A(b(z0)))
S tuples:
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(A(z0))
C(c(b(z0))) → c4(A(b(z0)))
K tuples:none
Defined Rule Symbols:
a, c
Defined Pair Symbols:
A, C
Compound Symbols:
c3, c4, c4
(19) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
C(c(b(z0))) → c4(A(b(z0)))
We considered the (Usable) Rules:none
And the Tuples:
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(A(z0))
C(c(b(z0))) → c4(A(b(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A(x1)) = [4]x1
POL(C(x1)) = [2]x1
POL(b(x1)) = x1
POL(c(x1)) = [1] + [3]x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → z0
a(z0) → b(z0)
a(b(z0)) → b(c(z0))
c(c(z0)) → a(c(a(z0)))
Tuples:
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(A(z0))
C(c(b(z0))) → c4(A(b(z0)))
S tuples:
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(A(z0))
K tuples:
C(c(b(z0))) → c4(A(b(z0)))
Defined Rule Symbols:
a, c
Defined Pair Symbols:
A, C
Compound Symbols:
c3, c4, c4
(21) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
C(c(z0)) → c4(A(z0))
We considered the (Usable) Rules:none
And the Tuples:
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(A(z0))
C(c(b(z0))) → c4(A(b(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A(x1)) = [4] + [2]x1
POL(C(x1)) = [4] + x1
POL(b(x1)) = x1
POL(c(x1)) = [4] + [3]x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → z0
a(z0) → b(z0)
a(b(z0)) → b(c(z0))
c(c(z0)) → a(c(a(z0)))
Tuples:
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(A(z0))
C(c(b(z0))) → c4(A(b(z0)))
S tuples:
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(C(z0), A(z0))
K tuples:
C(c(b(z0))) → c4(A(b(z0)))
C(c(z0)) → c4(A(z0))
Defined Rule Symbols:
a, c
Defined Pair Symbols:
A, C
Compound Symbols:
c3, c4, c4
(23) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
A(b(z0)) → c3(C(z0))
We considered the (Usable) Rules:none
And the Tuples:
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(A(z0))
C(c(b(z0))) → c4(A(b(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A(x1)) = [2] + [4]x1
POL(C(x1)) = [4]x1
POL(b(x1)) = x1
POL(c(x1)) = [1] + [2]x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → z0
a(z0) → b(z0)
a(b(z0)) → b(c(z0))
c(c(z0)) → a(c(a(z0)))
Tuples:
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(A(z0))
C(c(b(z0))) → c4(A(b(z0)))
S tuples:
C(c(z0)) → c4(C(z0), A(z0))
K tuples:
C(c(b(z0))) → c4(A(b(z0)))
C(c(z0)) → c4(A(z0))
A(b(z0)) → c3(C(z0))
Defined Rule Symbols:
a, c
Defined Pair Symbols:
A, C
Compound Symbols:
c3, c4, c4
(25) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
C(c(z0)) → c4(C(z0), A(z0))
We considered the (Usable) Rules:none
And the Tuples:
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(A(z0))
C(c(b(z0))) → c4(A(b(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(A(x1)) = [3] + [4]x1
POL(C(x1)) = [4]x1
POL(b(x1)) = [3] + x1
POL(c(x1)) = [2] + [2]x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(z0) → z0
a(z0) → b(z0)
a(b(z0)) → b(c(z0))
c(c(z0)) → a(c(a(z0)))
Tuples:
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(C(z0), A(z0))
C(c(z0)) → c4(A(z0))
C(c(b(z0))) → c4(A(b(z0)))
S tuples:none
K tuples:
C(c(b(z0))) → c4(A(b(z0)))
C(c(z0)) → c4(A(z0))
A(b(z0)) → c3(C(z0))
C(c(z0)) → c4(C(z0), A(z0))
Defined Rule Symbols:
a, c
Defined Pair Symbols:
A, C
Compound Symbols:
c3, c4, c4
(27) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(28) BOUNDS(O(1), O(1))